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ABSTRACT

Re-entry of a rotating symmetrical missile, which is assumed
to move along a straight path, is examined. The equations of rotational
motion are reduced to one second order differential equation for the
angle-of-attack, the other angles being then obtainable as quadratures.
This form of the equations of motion is suitable for numerical integration,
as all of the exact constants of motion have already been integrated out.

Small angle oscillations are considered, and it is shown that pre-
vious analyses of the effect of rotation on oscillation are in error, due
to an improper procedure for obtaining the small-angle equations. It
is pointed out that the precession rate of the oscillational motion is likely
to depend as much on non-linearities in the aerodynamic restoring torque
as on the rotational velocities.

For a rotating missile with large initial angle-of -attack, the adia-
batic invariant is used to calculate the amplitude of oscillation at the lower
altitude s.
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RE-ENTRY OF ROTATING MISSILES

by

Conrad L. Longmire

I. INTRODUCTION

In this note, we discuss the angular motion of missiles which are
rotating as they re-enter the atmosphere, without necessarily making the
assumption that the angle-of-attack is small. We do assume that the tra-
jectory of the missile is a straight line, that the missile's external enve-
lope is axially symmetric about one of the principal axes of inertia, and
that the center of mass lies on this axis.

II. THE EQUATIONS OF MOTION

We use the coordinate systems shown in Fig. 1. The origin of the
coordinates is at the center of gravity of the missile. The missile has
moment of inertia A about the X' and Y' axes and moment of inertia C
about the Z' axis.

When the angle e does not vanish, the aerodynamic forces on the
missile lead to a torque whose magnitude T(E , t) depends on e (and on
the time) and whose direction is parallel to the line ab in Fig. 1, i. e. ,
the line of intersection of the X' Y' plane with the XY plane. Thus, the
components of the torque about the Z and Z' axes vanish,

Tz 0, (1)

TZ, =0, (2)

and the components about the X' and Y1 axes are

T X = - T(e,t) cos q, (3)

Ty, = T(E , t) sin 4. (4)

The choice of sign is such that positive T(E) implies a torque which
tries to reduce e .

I
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z

direction of travel

8

Fig. 1. Coordinate Systems. The XYZ axes are fixed in space, with thedirection of travel of the missile in the minus Z direction. The X'Y'Z'axes are fixed in the missile, and the Z' axis is the symmetry axis. Theangles E) , and 0 are the Euler angles.
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Let p, q, and r be the angular velocities of the missile about the
X', Y' and Z' axes, respectively. Then Euler' s Dynamical Equations
are:

A dp - (A - C) qr = - T(e, t) cos (5)

dt

A dt- + (A - C) rp T(O ,t) sin (6)

S~dr
r •-0. (7)

From Eq. (7), the angular velocity aaout the aymmetry axis is constant,

r = constant = v. (8)

We shall call v the spin rate.

Because the torque T() , t) depends explicitly on the time (on account
of the changing air density), the total energy is not a constant of motion.
However, multiplying Eq. (5) by p, Eq. (6) by q, and adding, gives

-dT (p2 + q2 2 A [ p cos 4'- q sin 4']. (9)

At this point it is convenient to introduce the Euler angles instead of p,
q, and r. The inter-relations are (dot means time derivative):

p= sin e sin 0 + e cos 0 (10)

q4=sine cosqS -e sin 4 (I1)

V = r + cose. (12)

From Eq. (12) one can obtain the angle 4 once 4 and e are known; but
we are not interested in 4 since it is essentially not observable. How-
ever, using Eq.'s (10) and (11) in Eq. (9) gives

d sin 2 T(E ,t) e (13)
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If T(e, t) did not depend explicity on the time, this equation would
immediately yield the total energy constant. The left hand side is the
rate of change of the kinetic energy of rotation, less the spin energy.
and the right hand side is the rate at which the aerodynamic torque does
work (a factor two and the moment of inertia A have been divided out).

Eq. (13) contains two dependent variables, E and 0. The latter can
be eliminated by use of another constant of motion, namely, the component
of angular momentum about the Z axis. That this component is constant
is a result of Eq. (1). From Fig. 1, it is seen that the Z-component LZ
of the angular momentum, expressed in terms of p, q, and r, is

Lz = A sin e [p sin 0+ q cos 0] + C r cos e (14)

Replacing p, q, and r by means of Eq. 's (10) - (12), we find

2

sin E) 0 + b v cos 0 = p (15)

where we have defined two new constants

b C (16)
A
L LzL- -(17)

Eq. (15) can be used to eliminate ý from Eq. (13), with the result

d 62 2T(e,t) d (- b v cos e )(2

"" A 7 sin2 E)

This form of the equation of motion in the e variable will be useful for
discussing the adiabatic invariant. For the purpose of actually solving
the equation it is more convenient to carry out the time differentiations
indicated. The equation then takes the form

T( ,t) ba (P- bvcos e) 2

SFG 2 sinz e

This equation has the form of Newton's law for a particle moving in one
dimension under a force given by the right hand side. The numerical
solution of such equations can be easily accomplished by well known
methods.
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Once e (t) has been found from Eq. (19), 0(t) is found by quadrature
from Eq. (15).

There is very little difference between the analysis above and the
usual theory of the symmetric top (see, e. g. , Osgood, Mechanics, sec.
18). The analysis was presented here to make it clear that the time
dependence of the torque does not prevent the reduction of the equations
of motion to one second order differential equation in one unknown.

III. SMALL-AMPLITUDE MOTION WITH TIME-INDEPENDENT TORQUE

In this section we shall assume that the torque does not depend ex-
plicitly on the time, and that the torque i~.w large that it dominates the
motion to such an extent that E) moves in a small interval not far from
E = 0. We approximate the torque by a linear form, letting

T(" Z e (20)
a

The meaning of the constant w a can be seen by inserting this form in
Eq. (19): wa is the frequency of the "pendulum" type of motion that
occurs when the angular momentum terms on the right in Eq. (19) are
not present. Thus, wa may be called the frequency of small oscillations
due to aerodynamic forces alone, or simply the aerodynamic frequencjy.
'0a depends on the air density, the missile velocity, the moment of inertia
A, and various aerodynamic coefficients relating to the missile shape.
In this section, we regard wa as a constant.

We now wish to find the effect of the angular momentum on the
frequency. To this end, we expand the second term on the right in Eq.
(19) in a power series in E, keeping terms up through the first power of
0. Eq. (19) then becomes

=- + I bPb)2 + I bv] E + (P-b ) 2  (21)a T53

The solutions of this equation are well known. It is, in fact, the equation
of motion for the radial coordinate of a two-dimensional harmonic oscil-
lator, with the frequencies equal in the two directions and given by

1" (f"b) 2 + bv , (22)
a

-5-
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and with angular momentum (3 - bv) about the center. If and 17 are

the (fictitious) Cartesian coordinates of this oscillator, so that

e = -2 +2

the motion in t, 1 makes an ellipse, as indicated in Fig. 2. The fre-
quency w above is the frequency of traversing the ellipse. The frequency
of the e motion

/ \9

\ /
NN

Fig. 2. Fictitious Two-Dimensional
Oscillator

is twice w, but in order to use a definition of frequency which goes over
to the commonly accepted definition when there is no angular momentum,
we shall call w the frequency, rather than 2w.

It must not be concluded that Fig. 2 gives a head-on view of the
trajectory of the missile nose. It is the Euler angle 0, rather than the
fictitious angle tan-I 71/ý , which determines the angular position of
the missile nose when projected into the X, Y plane in Fig. 1. The
angle 4 is to be found from Eq. (15),

= f - bPcos e dt (23)
sin 0

Into the integrand we have to insert 0 as a function of t. From the
analogy of Fig. 2, it is easy to see that 0 has the form

-6-



S= +• sin 2 wt (24)

apart from an arbitrary additive phase in the sine. Here X and ps are
constants. One relation between A and 1A is imposed by the equation of
motion, Eq. (21); substituting Eq. (24) therein, one can find that

2 2 2 2
X -ju = bv) /cW (25)

This equation is equivalent to the statement that the potential energy,
corresponding to the force term in Eq. 21, must have the same value
at the two turning points E)mi and emax (see Fig. 3). There is no

other relation between X and u, as the total energy of the 0 motion is
arbitrary.

When the expression (24) is substituted for e in Eq. (23), it is
seen that the integral cannot be performed exactly. However, we may

iIv8) ENERGY
V(9) I '

8.min e Bmox

Fig. 3. Energy Diagram
for e motion.

expand the integrand in Eq. (23) as a power series in e, keeping the
same number of terms (three) as we kept in deriving Eq. (21). Eq. (23)
then becomes

f- + v P b+--b--- + (B + M ) E) 2 ] dt (26)

The expression (24) is to be inserted for e.

Let us compute the increase in 0 during one period of the oscil-
lation, i. e. , carry the integration from t = - 7r/w to t = + 7r/w. One
then finds (with the help of Eq. 25) that the term (P - b v)/1 2 integrates
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to 2r. In fact, this term represents just the angular rate that one would
have in the fictitious two-dimensional harmonic oscillator. Thus, for
this term alone, Fig. 2 would give the correct head-on view. However,
the other terms in the integrand of Eq. (26) lead to an average rate of
advance of the angle of aphelion of

SP + b + + 7bp e2 (27)
ap

where 52 = X is the time average of E2

Because of the expansions used above, all the results of this section
are valid only when

« << 1 (28)

By calculating the angle G at which the force term in Eq. (21), i. e. ,
the right hand side, vanishes, one sees that the small angle requirement
demands generally that

2 > 2
a (29)

2 b 2 2
a

Thus, generally the results of this section are valid only when the aero-
dynamic frequency is much greater than the angular 7 oc1 M'e"of rotation.

The only exception to this rule is the case when P is very nearly
equal to b v, in which case we do not need large wa in order to have
small E . A spinning object with little wobble (i. e. , with most of its
angular momentum about the symmetry axis), and with a small angle e
between the symmetry axis and the Z axis, has P very nearly equal to
b v. Thus, this is the case of a gyroscope (i. e. , no torque) nearly aligned
and only slightly wobbling. For this case, Eq. (22) gives the frequency
w = bv/2 and Eq. (27) gives the precession rate = bv/2. Both of these
results are correct for the slightly wobbling gyroscope.

The corrections to the frequency due to rotation, and the precession
of the aphelion, differ from expressions given for these effects in the
literature. 1, 2 The reason for this is that the small angle approxima-
tion, in the references cited, was not made to sufficient accuracy to get
the frequency correction and the precession rate correctly. In these
references, the approximation made was to replace cos e by unity and
sin E by 0. However, in arriving at the expansion in Eq. (21), it was
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necessary to take the first three terms in the expansion of the sines and
cosines (in the term arising from rotation) in order to get the first order
correction to the frequency.

Let us estimate the error induced by neglecting higher powers of E)
on the right hand side of Eq. (21). The rotational term i3 Eq. (19) (i. e.,
the second term on the right) will contribute a term in e . The coefficient
of this term will be a linear combination of 2, b? PZ and P bv. The tor-
que function T(O ) is likely to be non-linear. If we assume that T(O) is
expandable as a power series and is an odd function of E, the next term
in T(E ) would also be of order e 3. Because the torque function is likely
to be quite non-linear, the coefficient of the E) 3 term is likely to be as
big as the coefficient of the linear torque term, namely w2 Thus,w
should consider the effect of adding a term

SKe3
K E

to the right hand side of Eq. (21), where

K = Krot = O •, b2 V 2 f3bv)

for the rotati-.nal corrections, and

K=KT a

for the non-linear torque corretions. The latter correction is apt to be
much the larger, since

e4 2

a

according So Eq. (21), and we require e to be small. Now, adding a
term K e o the right hand side of Eq. (21) will perturb its solution
by O(KE 3 /wa ); that is, if e 0 (t) and 0 1 (t) are the unperturbed and
perturbed solutions, respectively,

2

a

Thus, the fractional correction toe 0 (t) is of order 0 06 if K = Ko., but
of order E 02 if K = KT. It can then be seen from Eq. (26) that the non-
linear torque correction gives a correction to the rate of advance of
aphelion which is of the same order as the rate previously calculated,
Eq. (27). Thus, a non-linear torqiie can completely modify the pre-
cession of the aphelion angle.
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IV. SMALL-AMPLITUDE MOTION FOR EXPONENTIALLY VARYING wa

We again assume that the motion is confined to small angles, but let
the aerodynamic frequency vary with time according to the approximation

2 2 at
W a - 0 e (30)

We shall call the constant a the "density rate". It is related to the
missile velocity, the re-entry angle and the atmospheric scale height. A
typical value for a is about 1/4 sec'.

2
Equation (21) covers this case, since w a was not differentiated in

deriving it. Let us re-write Eq. (21) in the form

W2 - [t + + L 2 (31)

where we have defined

W 1/15 (-bv) + 1/4 pbp, (32)

and

, - - bp' (33)
2

It can be shown that w is positive.

Again, Eq. (31) is the equation of motion for the radial coordinate
of a fictitious harmonic oscillator in two dimensions, but with the spring
constant varying with time. If ý and 77 are Cartesian coordinates for
this fictitious oscillator, they satisfy equations of motion of the form

[2 eat + 2;'~~ •'=-[0' ect + 1 (34)

The substitution at

y e (35)

converts Eq. (34) to
2 2

1 d d 0 +4 0yry -7- + [ 4 1 + 4 1y -- 1 = 0 (36)
a a y
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This equation has the solutions

2 0

= +ik a- 0 Y) (37)

where

1" k = 1 (38)
a

and J is the Bessel function of imaginary order
ikO

00
2 wi 0 a n (_l)n W 0 y 2 n +ik

Jik (7 ) = n! (n+ik) (3

The fictitious coordinates 4 and 7 are each a linear combination of J ik
* and J-ik' and 0 is then given by

e = 4/2 +2 2 (40)

That the Bessel functions enter the solution of the small angle
problem is well known. In fact, the principle difference between these
results and those of reference I is that the frequency w I is different.

For early enough times, the variable y is small, and only the
first term in the series (39) need be considered. Then, apart from
constant factors, the solutions (37) are

at + 2 i+

+ik a + 1 p41t=y- (e )e (41)

Of course, the early time solution is only valid provided the initial
"gyroscopic' motion is confined to small angles, as was discussed in
the previous section. For this case, w = bv/2, and Eq. (41) is correct.

It is also worth noting at what time the aerodynamic forces begin
seriously to change the motion from its initial "gyroscopic" form. Taking
the first two terms of the series (39) leads to, apart from a constant
factor

-11-



eiW 1t I a )2 (2
T'1 k a2

where we have used the fact that

S0 y = "a (43)

Of course, wa depends on the time. We now examine two cases.

Case 1. w << a . or rotation rate small compared to density rate.
In this case k is small compared to unity, and the amplitude of the motion
is beginning to be seriously changed when

ata ( ( << a) (44)

Case 2. w* >> a, or rotation rate large compared to density rate.

In this case, k is large, and the phase of the motion begins to be seriously
changed when

a 2 a k 2 W a (phase, wl>> a) (45)

However, the amplitude of the motion is not yet seriously changed at this
point. This results from the fact that, for large k , the terms in the
series (39) up to n s k ipproximate the series for the exponential

i wit ia 2
e exp - 2~

If the n is dropped in the factors (n + ik), one gets exactly this result,
which has no change in amplitude. The correction is of order

1 'a 2

and the amplitude of the motion is seriously changed when

-12-



a ; a k Ss 2wI (amplitude, wI >> a) (46)

We may combine the results (44) and (46) into the statement that the
amplitude is seriously changed when the air density is high enough to make

2 Z 2
W = a + 4 w (amplitude) (47)

a

Finally, let us examine the motion at late times, when w is large
compared to wl and a. The asymptotic form of the Bessel funcation leads
to

2 1 C 2 21 2a w1 +l( a y2wa w 1 -+ a

J k [ 1 -')a I fo s

a a

(48)

a

Remember that w a increases exponentially with time,

dwa a (49)
dt - - • a

The "instantaneous frequency" of the motion is the rate at which the
argument of the cosine in Eq. (48) increases, or

S2 1 2

"instant. w" = wa + 1 1Wi (50)

2 a
Except for the term in a , this frequency is the same as that given by
Eq. (22), provided th.e radical there is expanded for large Wa. (Remember
the definition (32)). We may say that the az term is an effect of the
changing "spring constant".
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We also see from Eq. (48) that the amplitude of the oscillations
falls off as

amplitude 1 1 (51)

vr a (p air)

In fact, by comparing the initial and asymptotic forms of the Bessel
function, one can find the ratio of the amplitude to the initial amplitude

amplitude cosh ( -)I (ik)!
initial amplitude /

7T w 2iTW1  1/2
-- cosh( -[) sinh ( - )

c7 a a (52)

(See Jahnke and Emde, formnula f, p. 11, for the factorial).

Again, it should be borne in mind that this ratio is accurate only
if the initial gyroscopic motion is confined to small angles.

V. DISCUSSION OF THE LARGE ANGLE CASE BY USE OF THE ADIA-
BATIC INVARIANT.

The results of Sections III and IV depend on the assumption that the
angle e is small. This angle does become small eventually, deep in
the atmosphere, but it can be large initially. In this section we shall use
the adiabatic invariant to discuss the large angle case. This treatment
will depend on the as sumption that the initial rotational rate is large
compared to the density rate a.

We return to the exact equations, Eq. (18) or (19). Initially,
outside the atmosphere, the torque is negligible. In this case, Eq. (18)
can be in--egrated once, giving

*2- b(P- cosE)2

e + sn -2 = constant = h (53)
sin e
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p2 2
The constant h is the initial value of p + q (see Eq. (9)), the square of
the angular velocity about the two axes in the plane perpendicular to the
symmetry axis. I/h could be called the "tumble" angular velocity,
while v is the spin angular velocity. h can have any non-negative
value, independent of v.

Eq. (53) can be simplified by the substitution

cos e = u, (54)

which leads to

22 2
h = h (1-u ) + ( -bvu) (55)

This is the energy equation for a particle moving in a quadratic potential,
and therefore has harmonic solutions. The frequency U 0 of the oscil-
lations in u, and e is given by the coefficient of the quadratic term in
u, and is

=2 b2 2 + h (56)20

z

_ _

0 Fig. 3. Relation of Various

01 Parameters.

Fig. 3 is a vector diagram of the angular momenta, divided by
the moment of inertia A, for the present case of negligible torque.
The total angular momentum - is constant in magnitude and direction.
The constant P is the projection of L/A onto the Z-axis. by is the
angular momentum, divided by A, about the symmetry axis, and N-h is
the component of angular momentum, divided by A, perpendicular to
the symmetry axis. The apex a of the right triangle formed by L-/A,
by, and N/Th revolves around the circle C with angular velocity

0
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Now let the missile begin to enter the atmosphere. The torque

term in Eq. (19) builds up exponentially like e a~t . But if

12 0 a. , (57)

the change in the force function in Eq. (19) per cycle 2 ?rR0will be
small, and the action 1,

1 = f 6d E) f 0 dt, (58)
cycle cycle

will be approximately constant. We shall evaluate this integral shortly.

First, however, note that at some altitude, which we shall call the
critical altitude, the torque term in Eq. (19) will become of about equal
imiportance to the rotational term. At the critical altitude, the aero-
dynamic frequency w a is about equal to 02 )12, and the motion has just
become seriously changed by the aerodynamic forces. Above the critical
altitude, the frequency of the 0 variations is close to Q2 0, while below
the critical altitude the frequency increases, following and approaching
2 wa. Thus, if the adiabatic condition is satisfied initially, Eq. (57), it
will be satisfied at all times, since the density rate a is (approximately)
constant. The action will therefore be approximately constant at all
times, both above and below the critical altitude. Using this fact, we
can obtain a relation between the initial rotation rates, above the critical
altitude, and the amplitude of the small oscillations at altitudes somewhat
lower than the critical altitude. To do this we have to evaluate the action
integral for the initial gyroscopic motion and for the asymptotic small
amplitude motion.

From Eq. (53), the initial action is

= f Od 2f dOh- (P-b vcos E) (59)
Iin .O=2f dE ,h20(9

cycle E)Isin

where E) and 0 2 are the two zeroes of the radical, The integral can
be simplified by changing the variable to u = cos 0 and can be evaluated
with the help of formula (380. 311) of Dwight, p. 71. The result is
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ini
I in 2 7r g o -'(I I Ib v'I (60)

Swhere of(I PI , lbPI ) means the larger of I PI and IbvI . (This
choice corresponds to whether the tip of the missile, in its gyroscopic
motion, does or does not encircle the Z-axis.)

At altitudes somewhat lower than the critical altitude, the aero-
dynamic forces dominate the motion, forcing it to small angles. The
form of motion is then given approximately by the results of Sec. III,
in particular by Eq. Is (24) and (25). Thus the final action is approxi-
mately

2 + ?,/4 w 2 ( 2
Ifin= f e dt = 2 f cos (2•t) dt (61)

cycle t=-?r/4 • X + A sin (2wt)

Again, the substitution u = sin (2wt) and the same formulae in Dwight,
enable one to evaluate this integral, with the result

Ifin 7r W [ X IA]

Using Eq. (25) and the fact that e = X, we rewrite this equation as

-7 I
Ifin = 7r e- - 7 J P-b v 1  (62)

SEquating Iin and Ifin' we obtain an equation expressing the mean-square

angle of attack (at altitudes somewhat less than the critical altitude) in
terms of the initial rotation rates

e =- I I -bv] + 2 uo - 2( 1 P1,bvI)j (63)

For w here, one may use Eq. (22), or simply replace w by wa, since
the co-rrections are small at later times. Eq. (63) shows that the mean-
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square angle is larger for larger initial rotation rates.

We may ask whether Eq. (63) agrees with the result of Sec. IV in
the case where the initial gyroscopic motion is confined to small angles.
In this case, 3, by, and 0 o are all approximately equal, differing only
by about 00 bv/2, where Eo is representative of the initial small angles.
Equation (63) then becomes, within a factor of two or so

2 bS = ez -(64)

0 W
a

This is to be compared with Eq. (52), evaluated for the case where
Wl/a is large, and w1 = b v/2 (see Eq. (32) ) since b • bP. This
evaluation leads to the same result (64).

VI. THE CASE OF LARGE INITIAL ANGLES WITH SLOW ROTATION

The only case noL covered in previous sections is that where the
initial rotation rates are small compared to the density rate a but
initial angles are large. We shall now give an approximate discussion of
this case.

If the rotation rates are small compared to a, they may be ignored
entirely, except insofar as they determine the angle of attack the missile
will have when it arrives at the altitude where the aerodynamic forces
first become appreciable. Thus we may consider Eq. (19) without the
rotational term. Let us consider the torque function T(G ). It will have
a shape something like that indicated in Fig. 4. Up to an angle 0 7r/2,
a linear fit gives a fairly decent approximation. Therefore, if the initial
angle is not greater than about 7r/2, we may use the "small-angle" result
(52) evaluated for the case where wi/a is small, namely

amplitude Ca (65)

initial angle a

If the initial angle is larger than about ?r/2, the amplitude (at the
lower altitudes) will be larger than this formula implies, because the
first swing round of the missile will take longer than it would if the torque
continued to follow the linear fit. In fact, if the initial angle is almost
7r, it will take a very long time for the first swing round. However, such

-18-



} I
' I

cases are fairly improbable.

I /""-LINEAR FIr

T(8)

Fig. 4

To get further information, one can resort to numerical solution
of Eq. (19).
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